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LETTER TO THE EDITOR 

Theory of self-diffusion of highly charged spherical Brownian 
particles 

Josi Luis Arauz-Larat O and Magdaleno Medina-NoyolaS 
t Escuela de Ciencias Fisico-Matemiticas, Universidad Autdnoma de Puebla, Apdo. Postal 
1152, 72000 Puebla, Mexico 
t. Departamento de Fisica, Centro de Investigacibn y de Estudios Avanzados del IPN, 
Apdo. Postal 14-740, 07000 MCxico, DF 

Received 23 October 1985 

Abstract. Starting from the N-particle Smoluchowski equation without hydrodynamic 
interactions we derived an expression for the mean square displacement by modelling the 
memory function entered in the equation for the incoherent scattering function. The 
numerical evaluation of that expression is done for the case of spherical particles interacting 
via a screened Coulombic potential. The results of this theory compare favourably with 
computer simulation results. 

The phenomenon of self-diff usion in a suspension of interacting spherical Brownian 
particles can be described (Pusey and Tough 1982, Hess and Klein 1983) by the mean 
square displacement, ((Ax( t))’), of a tagged particle. One can define a time-dependent 
self-diffusion coefficient D( t )  as 

a t )  = ([Ax(t)I2)/6t (1) 

such that 

lim D( t )  = D, 
r-rm 

where D, is referred to (Hess and Klein 1983) as the ‘tracer’ (or ‘self-) diffusion 
coefficient. In general, D, is found to be smaller than the free-particle diffusion 
coefficient, Do, due to the additional friction originated by the interaction of the tagged 
particle with the other diffusing macroparticles through hydrodynamic (Pusey and Van 
Megen 1983, Beenakker and Mazur 1983) and direct interactions (Ackerson and 
Fleishman 1982, Hanna et a1 1982, Lekkerkerker and Dhont 1984, Van Den Broeck 
1985, Hess and Klein 1982, Ohtsuki 1982, Tough 1982) and, for charged particles, with 
their own ionic atmosphere (Gorti et a1 1984, Schurr 1980, Medina-Noyola and 
Vizcarra-Rend6n 1985). The understanding of each of these effects presents its own 
difficulties. In particular, the effect of the strong repulsive interactions present in dilute 
suspensions of highly charged colloidal particles at low ionic strength has been studied 
by several authors (Pusey and Tough 1982, Hess and Klein 1982, 1983, Ohtsuki 1982, 
Tough 1982, Gaylor et a1 1980, Van Megen and Snook 1977). However, specific 
numerical results for this contribution to D, have only been derived from computer 
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simulations (Gaylor et aI 1980) and from two, rather involved, approximate theories 
(Hess and Klein 1982, Ohtsuki 1982). In this letter we describe an additional approach 
to the calculation of D( t )  which is exact at short times, and which, under additional 
simplifying assumptions, is particularly simple and accurate. 

It can be shown that, in the absence of hydrodynamic interactions, and if the 
diffusion of the N interacting macroparticles is governed by the Smoluchowski equation 
(Ackerson 1978), D ( t )  can be expressed as (Ackerson and Fleishman 1982, Lek- 
kerkerker and Dhont 1984) 

f r  

D( t )  = Do- lim (1 - T /  t ) [  M,( k, T ) /  k2]  d r  (3) 
k-0 J 

where M,( k, T )  is the memory function associated with the incoherent scattering 
function (Ackerson 1978) F,(k, t ) ,  i.e. 

-= aFs(k, t )  -k2DoF,(k,  t ) + i 0 ‘ M , ( k ,  t -T )F , ( k ,  7) d7. 
a t  

(4) 

As in the theory of simple liquids (Boon and Yip 1980), one could attempt to model 
the time dependence of M,(k ,  t )  by some simple functional form. A two-parameter 
model memory could be useful if two exact conditions were available for Ms( k, t ) ,  
such as the exact initial values of Ms(k, t )  and its time derivative. Let us notice that 
such initial values can be related to those of F,(k, t ) .  From (4), one can see that 

M,( k, 0 )  = m:*’( k )  - k 4 D i  ( 5 )  

M6( k, 0 )  = [aM,( k, t ) / a t ] , , ,  = (6) 

mB“’(k) = [a”Fs(k, t ) / a t “ ] r = o .  (7) 

and 

k )  +2k2Dom6”( k )  - k6Dg 

where 

An exact condition for m:’’(k) was first derived by Ackerson (1976) and it reads 

m ? ’ ( k ) =  DC k 4 + ( n / k B T )  drg(r)(k-V)’u(  4 ( i (8) 

whereas we have derived a similar result (Arauz-Lara 1985) for m?’(k) ,  namely 

mB3)( k )  = - DAk6 - 3 - 1 drg( r ) (k  * V)’u(r) D’k2n 
kB 

(kB TI2 

V)Vu(r)]* 

drdr’g‘3’(r, r’)(k.V)(k-V’)(V *V’)u(r)u(r’). (9) 

In these equations, U( r )  is the interparticle potential, g( r )  the radial distribution 
function, g‘3’( r, r’) the three-particle distribution function and T is the temperature. 
In this manner, the equations above reduce the determination of the self-diff usion 
properties to the calculation of these static quantities. Although the time dependence 
of M,(k ,  t )  may be, in general, rather involved (for example Hess and Klein (1983) 
have found an asymptotic power law decay), a simpler functional form could be used 
in the approach above. For instance, if M,(k, t )  is modelled by 

MJk, 1) = 4 k )  exp[-b(k)tI (10) 
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then 

with 

A =  drg(r)(&*V)’u(r)  J 
B =  drg(r)[(&.V)Vu(r)]’ 5 

and where n is the number concentration of macroparticles. 
We have evaluated D( t )  for the hard sphere plus repulsive Yukawa potential under 

the following additional approximations. (i) We have neglected the contributions 
involving three-body correlations, which are of higher order in n (i.e. we have set 
nC = 0-this is strictly valid only at very low concentrations; in a more accurate 
approximation, nC could be evaluated using Kirkwood’s superposition approxima- 
tion). (ii) We approximate g ( r )  by the solution of the ‘rescaled’ mean spherical 
approximation suggested by Hansen and Hayter (1982), in which, however, the use 
of the results of Hoye and Blum (1977) for gMSA(r) allows an (essentially) analytic 
evaluation of A and B in (12) and (13). The details of these derivations (Arauz-Lara 
1985) will be published elsewhere, but the results are now illustrated. 

0 1 2 3 4 

t x 103 is-’ I 

Figure 1. D(i)  against t for a system of spherical particles; z =0.15, K =200 and Do= 
9.35 x m2 s-’, The dots are the computer simulation data (Gaylor et al 1980). 
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In figure 1 we compare the time dependence of D( t )  resulting from our calculations, 
with the simulation results of Gaylor et a1 (1980), for the pair potential 

r / u = x >  1 -- 4 r )  - exp[-z(x - 1)l 
kB T X 

(15) 
=oo x < l  

with z = 0.15, K = 200, and hard-sphere volume fraction 4 = vnu3/6  = 4.4 x We 
notice that the initial decay of D( t )  is very accurately predicted by our theory, whereas 
the long-time limit of D ( t )  seems to be somewhat larger than the simulation results. 
Figure 2 shows the dependence of D( t )  at t = 5 x s on 4 for a fixed potential, 
with z = 0.15 and K = 556. For this potential, the ‘fluid’ of macroparticles crystallises 
at 4,,, = 0.7 x From figure 2 ,  we see that even for this more demanding system, 
our results compare quite well with the simulation data for values of 4 up to about 
half the volume fraction of melting. This is more interesting considering that the 
calculations above do not involve any adjustable parameter, and that they correspond 
to the simplest approximation within the scheme suggested here. We have made 
additional comparisons with simulation results and with the results of other theories, 
and expect to extend this method to treat polydispersity effects. 

0 1 2 3 4 5 6 1 
l px104 

Figure 2. D( t = 5 x 
The broken line is the linear limit which can be obtained if one uses g ( r )  = 
than the MSA. The dots represent the simulation data (Gaylor er a1 1980). 

s )  against 4 for the same system as in figure 1 but with K = 556. 
rather 
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